Serveur d'exploration sur l'OCR

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Using soil residence time to delineate spatial and temporal patterns of transient landscape response

Identifieur interne : 000563 ( Istex/Corpus ); précédent : 000562; suivant : 000564

Using soil residence time to delineate spatial and temporal patterns of transient landscape response

Auteurs : Peter Almond ; Josh Roering ; T. C. Hales

Source :

RBID : ISTEX:C602CEC1913D6BC964EB7D04CC40BE3929D1B662

Abstract

On hillslopes the balance between soil transport and production determines local soil thickness and the age distribution of particles that comprise the soil (where age refers to the time elapsed since detachment from bedrock). The mean of this age distribution is defined as the residence time, and in a landscape with time‐invariant topography (i.e., morphologic steady state), the spatial uniformity of soil production ensures that the residence time of soils is spatially invariant. Thus, given constant soil‐forming factors, spatial variation of soil properties reflects differences in residence time driven by nonuniform soil production. Spatially extensive soil databases, which are often freely available in electronic form, provide a cheap and accessible means of analyzing patterns of soil residence time and quantifying landscape dynamics. Here we use a soil chronosequence to calibrate a chronofunction describing the reddening of soils in the Oregon Coast Range, which is then used to quantify the spatial distribution of soil residence time. In contrast to the popular conception that the Oregon Coast Range experiences uniform erosion, we observe systematic variations in soil residence time driven by stream capture, deep‐seated landsliding, and lateral channel migration. Large, contiguous areas with short residence time soils (hue 10YR) occur west of the Siuslaw River–Long Tom Creek drainage divide, whereas soil patches with redder hues of 7.5YR or 5YR indicate longer residence times and transient landscape conditions. These zones of red soils (5YR) occur east of the Siuslaw–Long Tom divide, coinciding with low‐gradient ridge and valley topography and deeply alluviated valleys resulting from drainage reversal in the Quaternary. Patches of red soils are also associated with deep‐seated landslides at various locations in our study area. Our calculated soil residence times appear subject to overestimation resulting from limitations of the simple weathering index used here and chronofunction calibration uncertainties. Nonetheless, our soil residence time estimates appear accurate to within an order of magnitude and provide a useful constraint on landscape dynamics over geomorphic timescales.

Url:
DOI: 10.1029/2006JF000568

Links to Exploration step

ISTEX:C602CEC1913D6BC964EB7D04CC40BE3929D1B662

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Using soil residence time to delineate spatial and temporal patterns of transient landscape response</title>
<author>
<name sortKey="Almond, Peter" sort="Almond, Peter" uniqKey="Almond P" first="Peter" last="Almond">Peter Almond</name>
<affiliation>
<mods:affiliation>Soil and Physical Sciences Group, Division of Agriculture and Life Sciences, Lincoln University, Canterbury, Christchurch, New Zealand</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: almondp@lincoln.ac.nz</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Roering, Josh" sort="Roering, Josh" uniqKey="Roering J" first="Josh" last="Roering">Josh Roering</name>
<affiliation>
<mods:affiliation>Department of Geological Sciences, University of Oregon, Oregon, Eugene, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hales, T C" sort="Hales, T C" uniqKey="Hales T" first="T. C." last="Hales">T. C. Hales</name>
<affiliation>
<mods:affiliation>Department of Geological Sciences, University of Oregon, Oregon, Eugene, USA</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:C602CEC1913D6BC964EB7D04CC40BE3929D1B662</idno>
<date when="2007" year="2007">2007</date>
<idno type="doi">10.1029/2006JF000568</idno>
<idno type="url">https://api.istex.fr/document/C602CEC1913D6BC964EB7D04CC40BE3929D1B662/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000563</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Using soil residence time to delineate spatial and temporal patterns of transient landscape response</title>
<author>
<name sortKey="Almond, Peter" sort="Almond, Peter" uniqKey="Almond P" first="Peter" last="Almond">Peter Almond</name>
<affiliation>
<mods:affiliation>Soil and Physical Sciences Group, Division of Agriculture and Life Sciences, Lincoln University, Canterbury, Christchurch, New Zealand</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: almondp@lincoln.ac.nz</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Roering, Josh" sort="Roering, Josh" uniqKey="Roering J" first="Josh" last="Roering">Josh Roering</name>
<affiliation>
<mods:affiliation>Department of Geological Sciences, University of Oregon, Oregon, Eugene, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hales, T C" sort="Hales, T C" uniqKey="Hales T" first="T. C." last="Hales">T. C. Hales</name>
<affiliation>
<mods:affiliation>Department of Geological Sciences, University of Oregon, Oregon, Eugene, USA</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Geophysical Research: Earth Surface</title>
<title level="j" type="abbrev">J. Geophys. Res.</title>
<idno type="ISSN">0148-0227</idno>
<idno type="eISSN">2156-2202</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="2007-09">2007-09</date>
<biblScope unit="volume">112</biblScope>
<biblScope unit="issue">F3</biblScope>
<biblScope unit="page" from="n/a">n/a</biblScope>
<biblScope unit="page" to="n/a">n/a</biblScope>
</imprint>
<idno type="ISSN">0148-0227</idno>
</series>
<idno type="istex">C602CEC1913D6BC964EB7D04CC40BE3929D1B662</idno>
<idno type="DOI">10.1029/2006JF000568</idno>
<idno type="ArticleID">2006JF000568</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">On hillslopes the balance between soil transport and production determines local soil thickness and the age distribution of particles that comprise the soil (where age refers to the time elapsed since detachment from bedrock). The mean of this age distribution is defined as the residence time, and in a landscape with time‐invariant topography (i.e., morphologic steady state), the spatial uniformity of soil production ensures that the residence time of soils is spatially invariant. Thus, given constant soil‐forming factors, spatial variation of soil properties reflects differences in residence time driven by nonuniform soil production. Spatially extensive soil databases, which are often freely available in electronic form, provide a cheap and accessible means of analyzing patterns of soil residence time and quantifying landscape dynamics. Here we use a soil chronosequence to calibrate a chronofunction describing the reddening of soils in the Oregon Coast Range, which is then used to quantify the spatial distribution of soil residence time. In contrast to the popular conception that the Oregon Coast Range experiences uniform erosion, we observe systematic variations in soil residence time driven by stream capture, deep‐seated landsliding, and lateral channel migration. Large, contiguous areas with short residence time soils (hue 10YR) occur west of the Siuslaw River–Long Tom Creek drainage divide, whereas soil patches with redder hues of 7.5YR or 5YR indicate longer residence times and transient landscape conditions. These zones of red soils (5YR) occur east of the Siuslaw–Long Tom divide, coinciding with low‐gradient ridge and valley topography and deeply alluviated valleys resulting from drainage reversal in the Quaternary. Patches of red soils are also associated with deep‐seated landslides at various locations in our study area. Our calculated soil residence times appear subject to overestimation resulting from limitations of the simple weathering index used here and chronofunction calibration uncertainties. Nonetheless, our soil residence time estimates appear accurate to within an order of magnitude and provide a useful constraint on landscape dynamics over geomorphic timescales.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Peter Almond</name>
<affiliations>
<json:string>Soil and Physical Sciences Group, Division of Agriculture and Life Sciences, Lincoln University, Canterbury, Christchurch, New Zealand</json:string>
<json:string>E-mail: almondp@lincoln.ac.nz</json:string>
</affiliations>
</json:item>
<json:item>
<name>Josh Roering</name>
<affiliations>
<json:string>Department of Geological Sciences, University of Oregon, Oregon, Eugene, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>T. C. Hales</name>
<affiliations>
<json:string>Department of Geological Sciences, University of Oregon, Oregon, Eugene, USA</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>soils</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>residence time</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>hillslopes</value>
</json:item>
</subject>
<articleId>
<json:string>2006JF000568</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<abstract>On hillslopes the balance between soil transport and production determines local soil thickness and the age distribution of particles that comprise the soil (where age refers to the time elapsed since detachment from bedrock). The mean of this age distribution is defined as the residence time, and in a landscape with time‐invariant topography (i.e., morphologic steady state), the spatial uniformity of soil production ensures that the residence time of soils is spatially invariant. Thus, given constant soil‐forming factors, spatial variation of soil properties reflects differences in residence time driven by nonuniform soil production. Spatially extensive soil databases, which are often freely available in electronic form, provide a cheap and accessible means of analyzing patterns of soil residence time and quantifying landscape dynamics. Here we use a soil chronosequence to calibrate a chronofunction describing the reddening of soils in the Oregon Coast Range, which is then used to quantify the spatial distribution of soil residence time. In contrast to the popular conception that the Oregon Coast Range experiences uniform erosion, we observe systematic variations in soil residence time driven by stream capture, deep‐seated landsliding, and lateral channel migration. Large, contiguous areas with short residence time soils (hue 10YR) occur west of the Siuslaw River–Long Tom Creek drainage divide, whereas soil patches with redder hues of 7.5YR or 5YR indicate longer residence times and transient landscape conditions. These zones of red soils (5YR) occur east of the Siuslaw–Long Tom divide, coinciding with low‐gradient ridge and valley topography and deeply alluviated valleys resulting from drainage reversal in the Quaternary. Patches of red soils are also associated with deep‐seated landslides at various locations in our study area. Our calculated soil residence times appear subject to overestimation resulting from limitations of the simple weathering index used here and chronofunction calibration uncertainties. Nonetheless, our soil residence time estimates appear accurate to within an order of magnitude and provide a useful constraint on landscape dynamics over geomorphic timescales.</abstract>
<qualityIndicators>
<score>8.5</score>
<pdfVersion>1.4</pdfVersion>
<pdfPageSize>612 x 792 pts (letter)</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>3</keywordCount>
<abstractCharCount>2222</abstractCharCount>
<pdfWordCount>12773</pdfWordCount>
<pdfCharCount>75361</pdfCharCount>
<pdfPageCount>19</pdfPageCount>
<abstractWordCount>321</abstractWordCount>
</qualityIndicators>
<title>Using soil residence time to delineate spatial and temporal patterns of transient landscape response</title>
<genre.original>
<json:string>article</json:string>
</genre.original>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>112</volume>
<publisherId>
<json:string>JGRF</json:string>
</publisherId>
<pages>
<total>19</total>
<last>n/a</last>
<first>n/a</first>
</pages>
<issn>
<json:string>0148-0227</json:string>
</issn>
<issue>F3</issue>
<subject>
<json:item>
<value>Beyond Steady State: The Dynamics of Transient Landscapes</value>
</json:item>
<json:item>
<value>BIOGEOSCIENCES</value>
</json:item>
<json:item>
<value>Soils/pedology</value>
</json:item>
<json:item>
<value>GLOBAL CHANGE</value>
</json:item>
<json:item>
<value>Geomorphology and weathering</value>
</json:item>
<json:item>
<value>HYDROLOGY</value>
</json:item>
<json:item>
<value>Geomorphology: hillslope</value>
</json:item>
<json:item>
<value>Sediment transport</value>
</json:item>
<json:item>
<value>Soils</value>
</json:item>
<json:item>
<value>OCEANOGRAPHY: PHYSICAL</value>
</json:item>
<json:item>
<value>Sediment transport</value>
</json:item>
</subject>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>2156-2202</json:string>
</eissn>
<title>Journal of Geophysical Research: Earth Surface</title>
<doi>
<json:string>10.1002/(ISSN)2156-2202f</json:string>
</doi>
</host>
<publicationDate>2007</publicationDate>
<copyrightDate>2007</copyrightDate>
<doi>
<json:string>10.1029/2006JF000568</json:string>
</doi>
<id>C602CEC1913D6BC964EB7D04CC40BE3929D1B662</id>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/C602CEC1913D6BC964EB7D04CC40BE3929D1B662/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/C602CEC1913D6BC964EB7D04CC40BE3929D1B662/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/C602CEC1913D6BC964EB7D04CC40BE3929D1B662/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Using soil residence time to delineate spatial and temporal patterns of transient landscape response</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<availability>
<p>WILEY</p>
</availability>
<date>2007</date>
</publicationStmt>
<notesStmt>
<note>Tab‐delimited Table 1.Tab‐delimited Table 2.</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Using soil residence time to delineate spatial and temporal patterns of transient landscape response</title>
<author>
<persName>
<forename type="first">Peter</forename>
<surname>Almond</surname>
</persName>
<email>almondp@lincoln.ac.nz</email>
<affiliation>Soil and Physical Sciences Group, Division of Agriculture and Life Sciences, Lincoln University, Canterbury, Christchurch, New Zealand</affiliation>
</author>
<author>
<persName>
<forename type="first">Josh</forename>
<surname>Roering</surname>
</persName>
<affiliation>Department of Geological Sciences, University of Oregon, Oregon, Eugene, USA</affiliation>
</author>
<author>
<persName>
<forename type="first">T. C.</forename>
<surname>Hales</surname>
</persName>
<affiliation>Department of Geological Sciences, University of Oregon, Oregon, Eugene, USA</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Journal of Geophysical Research: Earth Surface</title>
<title level="j" type="abbrev">J. Geophys. Res.</title>
<idno type="pISSN">0148-0227</idno>
<idno type="eISSN">2156-2202</idno>
<idno type="DOI">10.1002/(ISSN)2156-2202f</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="2007-09"></date>
<biblScope unit="volume">112</biblScope>
<biblScope unit="issue">F3</biblScope>
<biblScope unit="page" from="n/a">n/a</biblScope>
<biblScope unit="page" to="n/a">n/a</biblScope>
</imprint>
</monogr>
<idno type="istex">C602CEC1913D6BC964EB7D04CC40BE3929D1B662</idno>
<idno type="DOI">10.1029/2006JF000568</idno>
<idno type="ArticleID">2006JF000568</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2007</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract>
<p>On hillslopes the balance between soil transport and production determines local soil thickness and the age distribution of particles that comprise the soil (where age refers to the time elapsed since detachment from bedrock). The mean of this age distribution is defined as the residence time, and in a landscape with time‐invariant topography (i.e., morphologic steady state), the spatial uniformity of soil production ensures that the residence time of soils is spatially invariant. Thus, given constant soil‐forming factors, spatial variation of soil properties reflects differences in residence time driven by nonuniform soil production. Spatially extensive soil databases, which are often freely available in electronic form, provide a cheap and accessible means of analyzing patterns of soil residence time and quantifying landscape dynamics. Here we use a soil chronosequence to calibrate a chronofunction describing the reddening of soils in the Oregon Coast Range, which is then used to quantify the spatial distribution of soil residence time. In contrast to the popular conception that the Oregon Coast Range experiences uniform erosion, we observe systematic variations in soil residence time driven by stream capture, deep‐seated landsliding, and lateral channel migration. Large, contiguous areas with short residence time soils (hue 10YR) occur west of the Siuslaw River–Long Tom Creek drainage divide, whereas soil patches with redder hues of 7.5YR or 5YR indicate longer residence times and transient landscape conditions. These zones of red soils (5YR) occur east of the Siuslaw–Long Tom divide, coinciding with low‐gradient ridge and valley topography and deeply alluviated valleys resulting from drainage reversal in the Quaternary. Patches of red soils are also associated with deep‐seated landslides at various locations in our study area. Our calculated soil residence times appear subject to overestimation resulting from limitations of the simple weathering index used here and chronofunction calibration uncertainties. Nonetheless, our soil residence time estimates appear accurate to within an order of magnitude and provide a useful constraint on landscape dynamics over geomorphic timescales.</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>soils</term>
</item>
<item>
<term>residence time</term>
</item>
<item>
<term>hillslopes</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>index-terms</head>
<item>
<term>Beyond Steady State: The Dynamics of Transient Landscapes</term>
</item>
<item>
<term>BIOGEOSCIENCES</term>
</item>
<item>
<term>Soils/pedology</term>
</item>
<item>
<term>GLOBAL CHANGE</term>
</item>
<item>
<term>Geomorphology and weathering</term>
</item>
<item>
<term>HYDROLOGY</term>
</item>
<item>
<term>Geomorphology: hillslope</term>
</item>
<item>
<term>Sediment transport</term>
</item>
<item>
<term>Soils</term>
</item>
<item>
<term>OCEANOGRAPHY: PHYSICAL</term>
</item>
<item>
<term>Sediment transport</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2006-05-05">Received</change>
<change when="2007-05-08">Registration</change>
<change when="2007-09">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/C602CEC1913D6BC964EB7D04CC40BE3929D1B662/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component type="serialArticle" version="2.0" xml:lang="en" xml:id="jgrf297">
<header>
<publicationMeta level="product">
<doi>10.1002/(ISSN)2156-2202f</doi>
<issn type="print">0148-0227</issn>
<issn type="electronic">2156-2202</issn>
<idGroup>
<id type="product" value="JGRF"></id>
<id type="coden" value="JGREA2"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="JOURNAL OF GEOPHYSICAL RESEARCH: EARTH SURFACE">Journal of Geophysical Research: Earth Surface</title>
<title type="short">J. Geophys. Res.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="30">
<doi>10.1002/jgrf.v112.F3</doi>
<idGroup>
<id type="focusSection" value="6"></id>
</idGroup>
<titleGroup>
<title type="focusSection" xml:lang="en">Journal of Geophysical Research: Earth Surface</title>
</titleGroup>
<numberingGroup>
<numbering type="journalVolume" number="112">112</numbering>
<numbering type="journalIssue">F3</numbering>
</numberingGroup>
<coverDate startDate="2007-09">September 2007</coverDate>
</publicationMeta>
<publicationMeta level="unit" position="190" type="article" status="forIssue">
<doi>10.1029/2006JF000568</doi>
<idGroup>
<id type="editorialOffice" value="2006JF000568"></id>
<id type="society" value="F03S17"></id>
<id type="unit" value="JGRF297"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="19"></count>
</countGroup>
<copyright ownership="thirdParty">Copyright 2007 by the American Geophysical Union.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2006-05-05"></event>
<event type="manuscriptRevised" date="2007-03-28"></event>
<event type="manuscriptAccepted" date="2007-05-08"></event>
<event type="firstOnline" date="2007-08-15"></event>
<event type="publishedOnlineFinalForm" date="2007-08-15"></event>
<event type="xmlConverted" agent="SPi Global Converter:AGUv3.44_TO_WileyML3Gv1.0.3 version:1.1; AGU2WileyML3G Final Clean Up v1.0; WileyML 3G Packaging Tool v1.0" date="2012-12-11"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:4.0.1" date="2014-03-20"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-30"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">n/a</numbering>
<numbering type="pageLast">n/a</numbering>
</numberingGroup>
<subjectInfo>
<subject href="http://psi.agu.org/specialSection/LANDSCAPE1">Beyond Steady State: The Dynamics of Transient Landscapes</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/0400">BIOGEOSCIENCES</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/0486">Soils/pedology</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/1600">GLOBAL CHANGE</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/1625">Geomorphology and weathering</subject>
</subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/1800">HYDROLOGY</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/1826">Geomorphology: hillslope</subject>
<subject href="http://psi.agu.org/taxonomy5/1862">Sediment transport</subject>
<subject href="http://psi.agu.org/taxonomy5/1865">Soils</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4500">OCEANOGRAPHY: PHYSICAL</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4558">Sediment transport</subject>
</subjectInfo>
</subjectInfo>
<selfCitationGroup>
<citation xml:id="jgrf297-cit-0000" type="self">
<author>
<familyName>Almond</familyName>
,
<givenNames>P.</givenNames>
</author>
,
<author>
<givenNames>J.</givenNames>
<familyName>Roering</familyName>
</author>
, and
<author>
<givenNames>T. C.</givenNames>
<familyName>Hales</familyName>
</author>
(
<pubYear year="2007">2007</pubYear>
),
<articleTitle>Using soil residence time to delineate spatial and temporal patterns of transient landscape response</articleTitle>
,
<journalTitle>J. Geophys. Res.</journalTitle>
,
<vol>112</vol>
, F03S17, doi:
<accessionId ref="info:doi/10.1029/2006JF000568">10.1029/2006JF000568</accessionId>
.</citation>
</selfCitationGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:JGRF.JGRF297.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="8"></count>
<count type="tableTotal" number="2"></count>
</countGroup>
<titleGroup>
<title type="main">Using soil residence time to delineate spatial and temporal patterns of transient landscape response</title>
<title type="short">SOIL RESIDENCE TIME IN TRANSIENT LANDSCAPES</title>
<title type="shortAuthors">Almond
<i>et al</i>
.</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="jgrf297-cr-0001" affiliationRef="#jgrf297-aff-0001">
<personName>
<givenNames>Peter</givenNames>
<familyName>Almond</familyName>
</personName>
<contactDetails>
<email normalForm="almondp@lincoln.ac.nz">almondp@lincoln.ac.nz</email>
</contactDetails>
</creator>
<creator creatorRole="author" xml:id="jgrf297-cr-0002" affiliationRef="#jgrf297-aff-0002">
<personName>
<givenNames>Josh</givenNames>
<familyName>Roering</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="jgrf297-cr-0003" affiliationRef="#jgrf297-aff-0002">
<personName>
<givenNames>T. C.</givenNames>
<familyName>Hales</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation countryCode="NZ" type="organization" xml:id="jgrf297-aff-0001">
<orgDiv>Soil and Physical Sciences Group, Division of Agriculture and Life Sciences</orgDiv>
<orgName>Lincoln University</orgName>
<address>
<city>Canterbury, Christchurch</city>
<country>New Zealand</country>
</address>
</affiliation>
<affiliation countryCode="US" type="organization" xml:id="jgrf297-aff-0002">
<orgDiv>Department of Geological Sciences</orgDiv>
<orgName>University of Oregon</orgName>
<address>
<city>Eugene</city>
<countryPart>Oregon</countryPart>
<country>USA</country>
</address>
</affiliation>
</affiliationGroup>
<keywordGroup type="author">
<keyword xml:id="jgrf297-kwd-0001">soils</keyword>
<keyword xml:id="jgrf297-kwd-0002">residence time</keyword>
<keyword xml:id="jgrf297-kwd-0003">hillslopes</keyword>
</keywordGroup>
<supportingInformation>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="text/plain" href="urn-x:wiley:01480227:media:jgrf297:jgrf297-sup-0001-t01"></mediaResource>
<caption>Tab‐delimited Table 1.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="text/plain" href="urn-x:wiley:01480227:media:jgrf297:jgrf297-sup-0002-t02"></mediaResource>
<caption>Tab‐delimited Table 2.</caption>
</supportingInfoItem>
</supportingInformation>
<abstractGroup>
<abstract type="main">
<p xml:id="jgrf297-para-0001" label="1">On hillslopes the balance between soil transport and production determines local soil thickness and the age distribution of particles that comprise the soil (where age refers to the time elapsed since detachment from bedrock). The mean of this age distribution is defined as the residence time, and in a landscape with time‐invariant topography (i.e., morphologic steady state), the spatial uniformity of soil production ensures that the residence time of soils is spatially invariant. Thus, given constant soil‐forming factors, spatial variation of soil properties reflects differences in residence time driven by nonuniform soil production. Spatially extensive soil databases, which are often freely available in electronic form, provide a cheap and accessible means of analyzing patterns of soil residence time and quantifying landscape dynamics. Here we use a soil chronosequence to calibrate a chronofunction describing the reddening of soils in the Oregon Coast Range, which is then used to quantify the spatial distribution of soil residence time. In contrast to the popular conception that the Oregon Coast Range experiences uniform erosion, we observe systematic variations in soil residence time driven by stream capture, deep‐seated landsliding, and lateral channel migration. Large, contiguous areas with short residence time soils (hue 10YR) occur west of the Siuslaw River–Long Tom Creek drainage divide, whereas soil patches with redder hues of 7.5YR or 5YR indicate longer residence times and transient landscape conditions. These zones of red soils (5YR) occur east of the Siuslaw–Long Tom divide, coinciding with low‐gradient ridge and valley topography and deeply alluviated valleys resulting from drainage reversal in the Quaternary. Patches of red soils are also associated with deep‐seated landslides at various locations in our study area. Our calculated soil residence times appear subject to overestimation resulting from limitations of the simple weathering index used here and chronofunction calibration uncertainties. Nonetheless, our soil residence time estimates appear accurate to within an order of magnitude and provide a useful constraint on landscape dynamics over geomorphic timescales.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Using soil residence time to delineate spatial and temporal patterns of transient landscape response</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>SOIL RESIDENCE TIME IN TRANSIENT LANDSCAPES</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Using soil residence time to delineate spatial and temporal patterns of transient landscape response</title>
</titleInfo>
<name type="personal">
<namePart type="given">Peter</namePart>
<namePart type="family">Almond</namePart>
<affiliation>Soil and Physical Sciences Group, Division of Agriculture and Life Sciences, Lincoln University, Canterbury, Christchurch, New Zealand</affiliation>
<affiliation>E-mail: almondp@lincoln.ac.nz</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Josh</namePart>
<namePart type="family">Roering</namePart>
<affiliation>Department of Geological Sciences, University of Oregon, Oregon, Eugene, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">T. C.</namePart>
<namePart type="family">Hales</namePart>
<affiliation>Department of Geological Sciences, University of Oregon, Oregon, Eugene, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<dateIssued encoding="w3cdtf">2007-09</dateIssued>
<dateCaptured encoding="w3cdtf">2006-05-05</dateCaptured>
<dateValid encoding="w3cdtf">2007-05-08</dateValid>
<edition>Almond, P., J. Roering, and T. C. Hales (2007), Using soil residence time to delineate spatial and temporal patterns of transient landscape response, J. Geophys. Res., 112, F03S17, doi:10.1029/2006JF000568.</edition>
<copyrightDate encoding="w3cdtf">2007</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">8</extent>
<extent unit="tables">2</extent>
</physicalDescription>
<abstract>On hillslopes the balance between soil transport and production determines local soil thickness and the age distribution of particles that comprise the soil (where age refers to the time elapsed since detachment from bedrock). The mean of this age distribution is defined as the residence time, and in a landscape with time‐invariant topography (i.e., morphologic steady state), the spatial uniformity of soil production ensures that the residence time of soils is spatially invariant. Thus, given constant soil‐forming factors, spatial variation of soil properties reflects differences in residence time driven by nonuniform soil production. Spatially extensive soil databases, which are often freely available in electronic form, provide a cheap and accessible means of analyzing patterns of soil residence time and quantifying landscape dynamics. Here we use a soil chronosequence to calibrate a chronofunction describing the reddening of soils in the Oregon Coast Range, which is then used to quantify the spatial distribution of soil residence time. In contrast to the popular conception that the Oregon Coast Range experiences uniform erosion, we observe systematic variations in soil residence time driven by stream capture, deep‐seated landsliding, and lateral channel migration. Large, contiguous areas with short residence time soils (hue 10YR) occur west of the Siuslaw River–Long Tom Creek drainage divide, whereas soil patches with redder hues of 7.5YR or 5YR indicate longer residence times and transient landscape conditions. These zones of red soils (5YR) occur east of the Siuslaw–Long Tom divide, coinciding with low‐gradient ridge and valley topography and deeply alluviated valleys resulting from drainage reversal in the Quaternary. Patches of red soils are also associated with deep‐seated landslides at various locations in our study area. Our calculated soil residence times appear subject to overestimation resulting from limitations of the simple weathering index used here and chronofunction calibration uncertainties. Nonetheless, our soil residence time estimates appear accurate to within an order of magnitude and provide a useful constraint on landscape dynamics over geomorphic timescales.</abstract>
<note type="additional physical form">Tab‐delimited Table 1.Tab‐delimited Table 2.</note>
<subject>
<genre>keywords</genre>
<topic>soils</topic>
<topic>residence time</topic>
<topic>hillslopes</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Geophysical Research: Earth Surface</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>J. Geophys. Res.</title>
</titleInfo>
<genre type="journal">journal</genre>
<subject>
<genre>index-terms</genre>
<topic authorityURI="http://psi.agu.org/specialSection/LANDSCAPE1">Beyond Steady State: The Dynamics of Transient Landscapes</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0400">BIOGEOSCIENCES</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0486">Soils/pedology</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1600">GLOBAL CHANGE</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1625">Geomorphology and weathering</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1800">HYDROLOGY</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1826">Geomorphology: hillslope</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1862">Sediment transport</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1865">Soils</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4500">OCEANOGRAPHY: PHYSICAL</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4558">Sediment transport</topic>
</subject>
<identifier type="ISSN">0148-0227</identifier>
<identifier type="eISSN">2156-2202</identifier>
<identifier type="DOI">10.1002/(ISSN)2156-2202f</identifier>
<identifier type="CODEN">JGREA2</identifier>
<identifier type="PublisherID">JGRF</identifier>
<part>
<date>2007</date>
<detail type="volume">
<caption>vol.</caption>
<number>112</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>F3</number>
</detail>
<extent unit="pages">
<start>n/a</start>
<end>n/a</end>
<total>19</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">C602CEC1913D6BC964EB7D04CC40BE3929D1B662</identifier>
<identifier type="DOI">10.1029/2006JF000568</identifier>
<identifier type="ArticleID">2006JF000568</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright 2007 by the American Geophysical Union.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/OcrV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000563 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000563 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    OcrV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:C602CEC1913D6BC964EB7D04CC40BE3929D1B662
   |texte=   Using soil residence time to delineate spatial and temporal patterns of transient landscape response
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 16:53:45 2017. Site generation: Mon Mar 11 23:15:16 2024